MCS51单片机是我国应用最为广泛的单片机种。以往单片机应用程序主要用汇编语言编写,由于汇编语言程序的可读性和可移植性都较差,采用汇编语言编写单片机应用程序不但周期长,而且调试和排错也比较困难。为了提高编制单片机应用程序的效率,改善程序的可读性和可移植性,采用高级语言无疑是一种好的选择。C语言是一种通用的计算机程序设计语言,既具有一般高级语言的特点,又能直接对计算机的硬件进行操作,表达和运算能力也较强,许多以往只能采用汇编语言来解决的问题现在都可以改用c语言来解决。
德国Keil Software公司多年来致力于单片机c语言编译器的研究。该公司开发的Keil C51是一种专为8051单片机设计的高效率c语言编译器,符合ANSI标准,生成的程序代码运行速度极高,所需要的存储器空间极小,完全可以和汇编语言相媲美。Keil C51具有丰富的函数库,包含100多种功能函数,为用户编程提供了极大的方便。C51程序可以实现与汇编语言的接口,两者相互之间的调用十分方便。。高版本的Keil C51编译器,尤其是Keil Vision2(基于Windows操作系统的C51集成编译环境),以其性能优秀、使用方便,受到了众多单片机爱好者的欢迎。
在有些测量仪表中,常需要提供不同频率的低频正弦波信号源,它们的频率完全成整数倍关系。如测量电厂工业用水的电导为防止电极传感器的极化,要用低频正弦波信号作为激励源,双频测导法就要求提供精确双倍频率的正弦信号。常用的正弦波信号倍频或分频采用的方法有:
- 方波信号分频后滤波;
- 锁相合成法;
- 单片机控制的D/A转换后再滤波等。
方法① 由于基频的谐波分量大,滤波效果差而很少采用;方法②采用的是压控振荡原理,常用于高频正弦信号的倍频或分频;方法③ 由于高频谐波分量远小于基波分量,滤波效果好且能精确定时,容易实现信号的倍频或分频。本文采用单片机AT89C2051控制D/A转换实现倍频正弦波信号的产生,编程语言采用的就是Keil C51。
1 硬件电路
图1为倍频正弦波信号发生电路,U2为l0位串行DA集成电路TLC5615(TEXAS仪器公司生产),VREF为2.5v的标准参考电压。U3 MAX813为看门狗复位集成电路,在U1(AT89C2051)出现程序跑飞时可自动复位。U1控制DA输出正弦变化的阶梯电压,经R1、C3滤波,C4隔直后即可得到波形较理想的正弦波,只要在一个周期内保证有足够多的输出点数。
图1 倍频正弦波发生电路
U1根据P1.3和P1.4(标号分别为SWF0和SWF1)的状态控制正弦波的产生与停止及基频与倍频,它们的组合关系为:SWF1=1、SWF0=x时DA无正弦信号输出;SWF1=0、SWF0=0时DA输出基本频率的正弦信号;SWF1=0、SWF0=1时DA输出双倍基频的正弦信号。DA转换器TLC5615遵从SPI标准的三线串行通信协议,三线分别是:/CS片选线,低电平有效;SCLK时钟线;DIN数据线。SPI串行总线上数据传送时序如图2所示,图中在/CS低电平有效时,时钟线SCLK上升沿时数据线DIN上的数据必须稳定,方可保证数据的正确传送,当/CS高电平时器件不接受数据,这样可在SPI串行总线上挂多个支持SPI标准的器件。有关SPI串行总线的具体参数请参阅器件资料。
图2 SPI串行数据总线数据传送时序图